电光非线性 Michelson 光学双稳态装置

李淳飞 季家镕

(哈尔滨工业大学物理教研室)

提 要

将一块电光晶体置于 Michelson 干涉仪的两臂之一的光路上,以反馈信号调制该臂光束的相位,从而 使两臂干涉输出的光强呈现光学双稳性。基于此原理提出了一种集成器件。

一、导 言

光学双稳性是近年来量子电子学领域内引起重视的新课题。它不仅具有理论意义,而 且具有重要的应用价值。利用光学双稳性制成的器件具有类似于晶体三极管、触发器等器 件的性质,由于它具有开关速度快、不受电磁干扰、可实现集成化等优点,可能在光信息处理 和光通信等方面获得实际应用。因此,近年来国际上光学双稳态器件(简称 BOD)的研 究发展很快。

1977 年 P. W. Smith 等人提出的电光非线性法布里--珀罗光学双稳态装置^[7,2] 具有可控的非线性,所需的光功率小,能制成自持式的集成光学器件^{(3]},为光学双稳性的实用化开辟了一条途径。但是该器件由于采用法布里--珀罗谐振腔也带来一些缺点:即制造工艺复杂、装调困难;由于内含介质而使输出光强衰减100倍以上^[4],谐振腔内激光振荡的建立时间影响开关速度的进一步提高;而且透射率曲线太陡不易获得稳定的光三极管特性。 1978 年 E. Garmire 等人在 P. W. Smith 工作的基础上,提出一种不用反射镜的方案^[5],使器件结构大为简化,避免了法布里--珀罗制造工艺上的困难。但是,这种基于偏振光干涉原理的器件,要求另加两块偏振器,而且所用的LiNbO₃晶体是 z 切割的,仅利用了电光系数的 γ₂₂ 分量,半波电压较高,因而消耗电功率较大。此外我们曾指出^[6],它的特性曲线是比较差的。

我们在研究具有反馈的电光非线器性件的基础上,提出了另一种新型光学双稳态器件。 该器件既不需要法布里--珀罗谐振腔,也不用偏振器,而是利用一束相位被电光调制的光与 另一束未被调制的光相互干涉,再用输出光信号反馈控制晶体上的电压,从而实现双稳性。 晶体采用 g 切割的 LiNbO₃,利用电光系数的 γ₃₈分量,它比 γ₂₂ 约大 9 倍,因而半波电压大 大降低。我们的装置结构简单,便于实现集成化;光损耗减小;开关速度高;获得了很好的双 稳特性曲线。我们还提出了本装置的一种集成化方案。

收稿日期: 1980年11月25日

3.4

1 卷

二、原 理

在 Michelson 干涉仪的一臂上置一块 LiNbO₃ 调制晶体, 光通过晶体后相位被调制, 另一臂不置晶体, 两束光相遇发生干涉。 设这两束光强度分别为 *I*₁ 和 *I*₂, 皆与入射光强 *I*₆ 成正比, 即

 $I_1 = \beta_1 I_i,$ $I_2 = \beta_2 I_i,$

β1 和 β2 取决于各路光所经过的光学元件的性质,为固定常数。

设 $\beta = \beta_1 + \beta_2$,则合成的输出光强应为:

 $I_t = (I_1 + I_2)(1 + \alpha \cos \phi),$

$$I_{t} = \beta I_{t} (1 + \alpha \cos \phi), \qquad (1)$$

式中φ为两束光的相位差, α为对比度, 定义为:

$$\alpha = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}} = \frac{2\sqrt{I_1 I_2}}{I_1 + I_2} o$$
(2)

若令该干涉仪的透射率 7 为输出光强与输入光强之比:

$$\tau = \frac{I_t}{I_i},\tag{3}$$

则得:

$$\boldsymbol{\tau} = \boldsymbol{\beta} (1 + \boldsymbol{\alpha} \cos \phi)_{\mathbf{o}} \tag{4}$$

可见透射率 τ 与相位差 ϕ 间具有如图 1 的正弦 型曲线关系(曲线 A)。

自输出光中分一部分光经 探测器 和放大器转变成反馈电压信号。若探测器和放大器皆工作在线性区,反馈电压正比于输出光强,将此电压加于晶体的电极上。若晶体为 y 切割,入射光沿 z 轴偏振,从 y 轴入射,而电压加在 z 轴方向,引起两次通过晶体的光的相位差的变化为:

$$\Delta \phi = \phi - \phi_0 = \pi \left(\frac{V}{V_{1/2}} \right), \tag{5}$$

其中

$$V_{1/2} = \frac{\lambda}{2n_e^3 \gamma_{33}} \left(\frac{d}{l}\right) \tag{6}$$

为半波电压, λ 为光波长, n_e 为 e 光折射率, γ_{38} 为电光系数, d 为电极间距, l 为晶体通光长度。据(5)式 $\Delta \phi$ 正比于 V, 则有:

$$\Delta\phi \propto V \propto I_t$$

或

$$\phi - \phi_0 = K I_t, \tag{7}$$

(8)

K为比例常数。据(3)式则有

$$\tau = \frac{\phi - \phi_0}{KI_i},$$

即 ~ 与 ¢ 关系为一直线, 斜率为 1/KI_i, 相应于不同入 射光得一组 ~ ф 直线, 见图 1 曲线 B_o ¢ 与 ~ 的关系必 须同时满足(4)和(8)两式, 可以用作图法来求解, 图 1 中曲线 A 和 B 的交点即为本装置的工作点。对应同 一入射光强得到两个稳定的输出光强。入射光连续变 化, 则可作出 I_i 依赖于 I_i 的双稳延滞回线, 如图 2 所

337

示。延滞回线的形状取决于 2mπ-φο 的大小,即取决于初始相位 φο。

三、实验结果

实验装置如图 3 所示,以 0.5 mW 的 He-Ne 单色偏振光入射,光强通过可调衰减器调变,被分光镜 P1 分开的两束光用补偿器使之强度近似相等,两束光干涉而输出的光被分光镜 P2 分取一部分,经探测器 T3 和放大器转变成电压信号,加于干涉仪一臂的晶体电极上,反馈调制此臂光的相位,进而调制输出光强,从而获得双稳特性。

4 期

若在电极上加 0→750 V 连续可变电压(此时不加反馈信号),可得到 τ-φ 调制曲线,如 图 4 所示。从照片上测得半波电压为 164 V。本实验采用的 y 切割晶体长 20.6 mm,电极 距为 3.5 mm。由(6)式算得半波电压值与实验结果相符。

若连续调变输入光强,同时在超低频示波器的两输入端输入由 T_1 、 T_2 探测器探测到的输入和输出光信号,即可获得双稳特性曲线。图 5 给出了一组在不同初相 ϕ_0 (通过改变反射镜 M_1 或 M_2 来改变 ϕ_0)下的双稳延滞回线,所得结果相当理想。

四、讨 论

以上指出,双稳延滞曲线的形状由 $\theta = 2m\pi - \phi_0$ 确定,也即由初始相位差 ϕ_0 确定。为 求得最小初相位差 ϕ_M ,对公式(4)求二阶导数,并令 $d^2\pi/d\phi^2 = 0$,得曲线拐点 *O* 的坐标为.

$$\phi_{o} = 2m\pi - \frac{\pi}{2},$$

$$\tau(\phi_{o}) = \beta_{o}$$

$$(9)$$

而由 ϕ_{M} 出发过 C 点切线的斜率为

$$\left.\frac{d\tau}{d\phi}\right|_{\phi=\phi_c}=\alpha\beta$$

则求得 φ_M

$$\phi_{M} = 2m\pi - \frac{\pi}{2} - \frac{1}{\alpha}, \qquad (10)$$

相应的θ值为

$$\theta_M = \frac{\pi}{2} + \frac{1}{\alpha}, \qquad (11)$$

这是产生双稳回线的最小θ值,它由对比度α确定。如图6所示,形成双稳回线所需 , 的最小相位差变化为:

根据(5)式最小反馈电压为

$$V_{\mathcal{H}} = \frac{V_{1/2}}{\pi \alpha},$$
 (12)

它与半波电压和对比度有关,因此为使双稳器件消耗 最小的电功率必须尽量降低半波电压,并使对比度尽 量增加。

以下来分析图 5 中各张照片的意义。

当 $-\pi/2 \leq \theta \leq 0$,且反馈电压较小,以致使 $\phi_0 < \phi \leq \pi/2$ 时得到图 5(a) 特性曲线;当 $0 < \theta \leq \theta_M$,时得到 5(b)、5(c) 特性曲线,类似晶体三极管特性,可用作光三极管及限幅器、 整形器等;当 $\theta > \theta_M$,得到 5(d)、5(e)、5(f) 双稳特性曲线,可用作光开关,光触发器及各 种光逻辑元件。

338

五、集成器件

为实现微型化器件,将本器件做成集成光学波导形式,有利于减少 d/l 比, 据(6)式有利

于降低半波电压,从而可以免去放大器。我们 建议集成器件采用钛扩散 LiNbOs 波导,如图 7 所示,光束通过耦合透镜自端面入射波导,在 波导内分成两束,每束光两侧电极上各加相反 极性的电压,使各自的相位发生相反变化。这 样不仅对称性好,且可使所需反馈电压降低一 半。输出光经耦合透镜扩束被光电探测器接

收,转换成电压,直接反馈控制波导中的光,而实现双稳运转。

电光 Michelson 器件与电光法布里-珀罗器件相比有如下优点:

- (1) 省去了反射镜,因而结构和工艺简单。
- (2) 光束单次通过波导损耗小,有利于实现自持式。
- (3) 没有法布里--珀罗谐振腔,有利于提高开关速度。
- (4) θμ 较大而易于获得稳定的光三极管特性。

参考文献

- [1] P. W. Smith, E. H. Turne; A. P. L., 1977, 30, No. 6 (15 Mar), 282~284.
- [2] P. W. Smith, E. H. Turner et al.; IEEE J. Q. E., 1978, QE-14, No. 3 (Mar), 207.
- [3] P. W. Smith, I. P. Kaminow et al.; A. P. L., 1979, 34, No. 1(1 Jan), 62.
- [4] 李淳飞, 许景春; 《光学学报》 1981, 1, No. 2, 167.
- [5] E. Garmire, J. H. Marburger et al.; A. P. L., 1978, 32, No. 5 (1 Mar), 320.
- [6] 李淳飞; «物理», 1980, 9, No. 2(Apr), 99.

An electrooptic nonlinear Michelson optical bistable devices

LI CHUNFEI and JI JIARONG

(Department of Physics, Harbin Institute of Technology)

(Received 25 November 1980)

Abstract

An electrooptical crystal was inserted in one of the two arms of a Michelson interferometer. The feedback signal was used for phase modulation of the light beam in this arm. Thus the light output intensity, as a result of the interference of two beams, exhibited optical bistability. An integrated optical device version based on this principle was proposed.